中文语言处理则是针对中文的语言处理技术,其基础技术一般包括以下几个层次:词法分析(分词、词性标注、实体识别)、句法分析、语义分析、语用分析。而中文分词是其中最基础也是使用最多的分析技术,像上层的信息检索、文本分类、机器翻译、问答系统、自动文摘等都会用到中文分词,可以说分词是中文语言处理技术的根基。...

精准推送目前已服务于58各业务线的日常推送和活动运营中。作为用户画像的一种应用场景,解决了千人千面的差异化推送需求,从技术上助力了58的用户增长。...

作为世界最大的生活服务平台,我们同样也希望用户知道“58就在那儿!”。要做到这一点,我们首先就需要具有对用户洞若观火、明察秋毫的能力,而58用户画像的建设就是以此为目标的。...

自然语言处理技术可以帮助我们提取文本中的有效信息,理解和挖掘用户的观点、情感和需求。这里我们通过影视剧集的评论分析,介绍爱奇艺在文本舆情挖掘方面的技术探索和实践。...

基于用户弱标注和人工精准标注数据、使用机器学习和深度学习的自然语言处理技术更好地理解视频、理解用户,从而让搜索、推荐、数据挖掘更智能,为用户提供智能化的专业视频体验。...

为了更好地利用短视频数据,提升短视频的创作和分发效果及效率,需要为短视频打上各种有用的标签,这些标签可以作为短视频所记录的内容的概括和总结...

命名实体识别(Named Entity Recognition, NER)是 NLP 里的一项很基础的任务,就是指从文本中识别出命名性指称项,为关系抽取等任务做铺垫...

LSF-SCNN,即基于词汇语义特征的跳跃卷积模型,基于卷积神经网络模型引入三种优化策略:词汇语义特征、跳跃卷积和K-Max均值采样 ,分别在词汇粒度、短语粒度、句子粒度上抽取更加丰富的语义特征,从而更好的在向量空间构建短文本语义表达模型,并广泛的适用于问答系统、释义识别和文本蕴含等计算成对儿出现的短文本的相似度的任务中。...

商品评论标签提取作为商品评论中的一个比较有意思的问题。评论标签提取的主要任务是从评论中了解到用户对产品的哪些功能、属性进行了怎样的评论,并抽取成简短有效的信息。...

本文就分享一个深度学习的方法,从评论中提取出用户的观点,比如从某火锅店的评价“环境蛮好,没有很重的香料味道,上菜快,不用调料也好吃”中提取出“环境好,上菜快”的评价标签,并和其他有类似标签的评价聚类。...

GAN网络是近两年深度学习领域的新秀,火的不行,本文旨在浅显理解传统GAN,分享学习心得。现有GAN网络大多数代码实现使用python、torch等语言,这里,后面用matlab搭建一个简单的GAN网络,便于理解GAN原理。...

本文我们提出了一种基于对抗训练的图像翻译技术,用于隐式地定位裸体图像中的敏感区域并在保留其语义信息的同时覆盖该区域。我们的方法不需要训练样本的配对工作,在实验验证过程中产生令人印象深刻而又高度逼真的结果,为解决裸体图像审查任务提供了一种新方法...